Tetrachloroethene [1] (Perclone)

NAMES:

Number of the CASE:

127-18-4

Name in the register:

Tetrachloroethene

Name of the substance:

Tetrachloroethene

Commercial synonyms, names:

Perchlorethene, PER, ethene, tetrachloro, 1,1,2,2- tetrachloroethene,

 

Cecolin 2, Dekapir 2, Digrisol, Dow-Per, Drosol, Dynaper, Etilin, Peran,

 

Perawin, Perclone, Sirius 2, Tetralex, Tetralina, Ankliostin, Didakene,

 

Nema, Perc and of many others.

English name:

Tetrachloroethene, Perchloroethene

Name German:

Tetrachlorethen, Perchlorethylen

General description:

Colourless liquid, of éthérée odor pointing out that of chloroform; the vapor is considerably heavier than the air.

PHYSICOCHEMICAL PROPRIETES:

Empirical formula:

C 2 Cl 4

Relative atomic mass:

165,83 G

Density:

1,624 g/cm 3 with 20°C

Density of gas:

5,73

Not boiling:

121,1°C

Point melting:

-23°C

Vapor tension:

18,9 hPa with 20°C; 32 hPa with 30°C; 84 hPa with 50°C

Point flash:

Nothing

Olfactive threshold:

0,3-5 mg/l in water,

 

4,7-70 ppmv in the air.

Solubility:

In water: 129 mg/l;

 

easily soluble in organic solvents.

Conversion factors:

1 ppm = 6,89 mg/m 3

 

1 mg/m 3 = 0,145 ppm

ORIGIN AND USES

Uses:
The tetrachloroethene is a useful solvent. According to BGA (1988), 35% of the produced quantities are used for the degreasing of metal parts, 50% for the chemical cleaning of the textiles. According to LAY (1988), approximately 60-65% are used for the treatment from metal surfaces and some 20% for chemical cleaning. In order to often reduce the vapor tension, one there assistant of the stabilizers of very heterogeneous chemical composition. The principal products containing of tetrachloroethene are as follows: adhesives of contact, grease-removers, products of décirage, waxings with shoes, pesticides for gardens, produced for the cleaning of the mattresses, cushions and fitteds carpet. In the majority of these products, the tetrachloroethene was replaced by less toxic solvents.

Origine/fabrication:
The tetrachloroethene is manufactured by oxyhydrochloration, perchlorination and/or deshydrochloration of hydrocarbons chlorinated or not.

FIGURES OF PRODUCTION:

World production

1978-80

1.100.000 T

(RIPPEN, 1989)

World production

1985

650.000 T

(ULLMANN, 1986)

EC

1980

< 500.000 T

(BGA, 1988)

The USA

1977

304.000 T

(BGA, 1988)

The USA

1985

220.000 T

(ULLMANN, 1986)

D

1979

113.000 T

(BMI, 1985)

D

1985

110.000 T

(ULLMANN, 1986)

D

1986

75.000 T

(LAY, 1988)

Japan

1973

57.000 T

(RIPPEN, 1989)

France

1981

26.000 T

(RIPPEN, 1989)

Mexico (importation.)

1984

15.000 T

(RIPPEN, 1989)

Sweden

1977

5.300 T

(RIPPEN, 1989)

 


TOXICITE:

Man:

DL O 140 mg/m 3 (1,3 or 7,5 h/j p. 5 j/s)

salt. WHO, 1984

Mammals:

 

 

Mouse

DL 50 8.000-11.000 mg/m 3 , v. oral

salt. VERSCHUEREN, 1983

Mouse

CL 100 135.000 mg/m 3 (2 H)

salt. MALTONI and Al, 1986

Mouse

CL 50 332.200 mg/m 3 (0,5 H)

salt. MALTONI and Al, 1986

Rat

Cen 475 mg/m 3 , inhalation (8 h/j for 5 j/s)

salt. VERSCHUEREN, 1983

Rat

DL 50 > 5.000 mg/kg, v. oral

salt. VERSCHUEREN, 1983

Rat

DL 50 13.000 mg/kg, v. oral (6 H)

salt. WHO, 1984

Rat

CL 100 20.000 ppm, inhalation (0,4 H)

salt. MALTONI and Al, 1986

Rat

CL 100 2.500 ppm, inhalation (7 H)

salt. MALTONI and Al, 1986

Rabbit

DL 20.000 ppm, inhalation (2 H)

salt. MALTONI and Al, 1986

Guinea-pig

CL 100 37.000 ppm, inhalation (0,67 H)

salt. MALTONI and Al, 1986

Cat

CLL 0 6 074 ppm, inhalation (2 H)

salt. MALTONI and Al, 1986

Watery organizations:

 

 

Daphnid

CL 50 18 mg/l (48 H)

salt. WHO, 1984

Daphnid

Cen 10 mg/l (48 H)

salt. WHO, 1984

Minnow of America

CL 50 46 mg/l (24 H)

salt. WHO, 1984

Large pole sun

CL 50 13 mg/l (96 H)

salt. WHO, 1984


Pathologie/Toxicology

Homme/mammifères: At the man, the tetrachloroethene is reabsorbed by the skin because of its grease-removing effect. Concentrations higher than 680 Mg/m 3 cause irritations of the eyes and respiratory tracts, and a 45 minutes exposure to concentrations of 4000-6780 Mg/m 3 involves an insensibilization of fabrics. This substance acts on the central nervous system and causes headaches, giddinesses and nauseas. The inhalation is often at the origin of neurological disorders which can appear a long time after the exposure. The WHO and the Company of German Research (DFG) classified tetrachloroethene among the cancerogenic substances. Experiments carried out with yeast cells also revealed mutagen effects; the teratogenicity and the fetotoxicity however were not shown yet to date.


BEHAVIOR IN THE ENVIRONMENT

Aquatic environment: The tetrachloroethene settles in water because of its tension of high vapor and its low solubility in water. This is why, it can accumulate in the underground tablecloths and surface waters. It is regarded as a dangerous substance for the aquatic environment (class of risk WGK 3 in the Federal Republic of Germany). It is toxic for the watery organizations and breaks up slowly in trichloroacetic water in acid and hydrogen chloride. The tetrachloroethene arrives in the aquatic environment through rejections of industrial effluents.

Atmosphere: Because of the high vapor voltage of this substance, 80 to 90% of the emissions migrate in the atmosphere where they are is widespread in way ubiquitaire. The tetrachloroethene can be degraded by photolysis and undoubtedly contributes to the destruction of the layer of ozone. An exchange occurs between the air and water, the passage towards the atmosphere constituting the way of privileged reaction.

Grounds: The accumulation of tetrachloroethene in the ground depends on the size of the particles of the ground and the humic rate. A biological degradation occurs in the ground. Strong concentrations are observed in the vicinity immediate of sources of emission.

Half-life: The half-life for the hydrolysis in ventilated aquatic environment is between 9 months and 6 years (UBA, 1986); in troposphere, the half-life is of env. 12 weeks, and can, in the event of reaction with radicals OH, to reach 8 weeks (UBA, 1986 and MALTONI and Al, 1986). Persistence in the unsaturated water grounds is 2 to 18 months (DVGW, 1985).

Degradation, products of decomposition:  Degradation in the grounds is carried out under the action of anaerobic micro-organisms methanogenes (UBA, 1986). In troposphere, the decomposition occurs by photo-oxidation by giving rise to carbon dioxide and hydrogen chloride. In water, the tetrachloroethene breaks up into acid trichloroacetic and hydrogen chloride (BGA, 1985). The products of decomposition are as follows: phosgene, (COCl 2 ), trichloroacétyle chloride and dichloracétyle chloride. In the human organism, the tetrachloroethene is degraded in the liver.

Food chain:  Tetrachloroethylene accumulates moderately in lipophilic fabrics.

 


VALUES LIMIT POLLUTION

Medium

Sector

Country/organ.

Statute

Value

Cat.

Remarks

Source

Water:

Water pot.

D

L

0,01 mg/l

 

 

salt. TVO, 1990

 

Water pot.

EC

G

0,001 mg/l

 

 

salt. Lau-bw, 1989

 

Water pot.

WHO

G

0,01 mg/l

 

 

salt. WHO, 1984

 

Water surfing.

The USA

 

0,02 mg/l

 

 

salt. WHO, 1987

 

Effluents

CH

L

0,05 mg/l

 

For drinking water

salt. Lau-bw, 1989

 

Effluents

D

L

5 g/m 3

 

With the sites of rejection

salt. ROTH, 1989

Air:

 

D

L

35 mg/m 3

MIK

Val.l.durée

salt. BAUM, 1988

 

 

D

L

110 mg/m 3

MIK

Valley C lasted 2)

salt. BAUM, 1988

 

 

D

L

100 mg/m 3

 

1)

salt. KÜHN & BIRETT, 1988

 

 

D

G

5 mg/m 3

 

3)

salt. BGA, 1988

 

 

GDR

L

0,5 mg/m 3

 

Val.c.durée

salt. HORN, 1989

 

 

GDR

L

0,06 mg/m 3

 

Val.l.durée

salt. HORN, 1989

 

 

WHO

G

5 mg/m 3

 

24 H val.indic.

salt. Lau-bw, 1989

 

 

WHO

G

8 mg/m 3

 

30 mn

salt. Lau-bw, 1989

 

Emission

D

L

100 mg/m 3

 

mass flow ³ 2 kg/h

salt. Your-Luft, 1986

 

Amb.prof.

With

(L)

260 mg/m 3

 

Val.l.durée

salt. MALTONI and Al, 1986

 

Amb.prof.

AUS

(L)

670 mg/m 3

 

Val.l.durée

salt. WHO, 1987

 

Amb.prof.

B

(L)

670 mg/m 3

 

Val.l.durée

salt. WHO, 1987

 

Amb.prof.

BG

(L)

10 mg/m 3

 

 

salt. MALTONI and Al, 1986

 

Amb.prof.

Br

(L)

525 mg/m 3

 

48 h/w

salt. WHO, 1987

 

Amb.prof.

CH

(L)

345 mg/m 3

 

Val.l.durée, skin

salt. WHO, 1987

 

Amb.prof.

CS

(L)

250 mg/m 3

 

4)

salt. WHO, 1984

 

Amb.prof.

CS

(L)

1250 mg/m 3

 

Val.c.durée

salt. WHO, 1984

 

Amb.prof.

D

L

345 mg/m 3

 

TRK (IIIB)

DFG, 1989

 

Amb.prof.

GDR

(L)

300 mg/m 3

 

Val.l.durée

salt. HORN, 1989

 

Amb.prof.

GDR

(L)

900 mg/m 3

 

Val.c.durée

salt. HORN, 1989

 

Amb.prof.

E

(L)

110 mg/m 3

 

Val.l.durée

salt. MALTONI and Al, 1986

 

Amb.prof.

AND

(L)

267 mg/m 3

 

Val.l.durée

salt. MALTONI and Al, 1986

 

Amb.prof.

F

(L)

405 mg/m 3

 

Val.l.durée

salt. MALTONI and Al, 1986

 

Amb.prof.

F

(L)

1080 mg/m 3

 

4)

salt. MALTONI and Al, 1986

 

Amb.prof.

GB

(L)

678 mg/m 3

 

Val.l.durée

salt. WHO, 1987

 

Amb.prof.

GB

(L)

1000 mg/m 3

 

10 mn

salt. WHO, 1987

 

Amb.prof.

H

(L)

10 mg/m 3

 

Val.l.durée

salt. WHO, 1987

 

Amb.prof.

H

(L)

50 mg/m 3

 

30 mn

salt. WHO, 1987

 

Amb.prof.

I

(L)

400 mg/m 3

 

Val.l.durée

salt. MALTONI and Al, 1986

 

Amb.prof.

I

(L)

1000 mg/m 3

 

Skin

salt. MALTONI and Al, 1986

 

Amb.prof.

J

(L)

268 mg/m 3

 

Val.l.durée

salt. MALTONI and Al, 1986

 

Amb.prof.

J

(L)

345 mg/m 3

 

4)

salt. WHO, 1987

 

Amb.prof.

NL

(L)

190 mg/m 3

 

Val.l.durée

salt. MALTONI and Al, 1986

 

Amb.prof.

NL

(L)

240 mg/m 3

 

Val.l.durée, skin

salt. WHO, 1987

 

Amb.prof.

PL

(L)

60 mg/m 3

 

4)

salt. WHO, 1987

 

Amb.prof.

RO

(L)

400 mg/m 3

 

Val.l.durée

salt. WHO, 1987

 

Amb.prof.

RO

(L)

500 mg/m 3

 

4)

salt. WHO, 1987

 

Amb.prof.

S

(L)

140 mg/m 3

 

1 day

salt. WHO, 1987

 

Amb.prof.

S

(L)

350 mg/m 3

 

15 mn

salt. WHO, 1987

 

Amb.prof.

SF

(L)

335 mg/m 3

 

 

salt. WHO, 1987

 

Amb.prof.

KNOWN

(L)

10 mg/m 3

 

4)

salt. MALTONI and Al, 1986

 

Amb.prof.

The USA

(L)

335 mg/m 3

TWA

 

ACGIH, 1986

 

Amb.prof.

The USA

(L)

1340 mg/m 3

STEL

15 mn

ACGIH, 1986

 

Amb.prof.

YU

(L)

10 mg/m 3

 

Val.l.durée

salt. WHO, 1987

 

Amb.prof.

YU

(L)

200 mg/m 3

 

Val.l.durée

salt. MALTONI and Al, 1986

 

Amb.prof.

D

L

100 µg/dl

BEATS

Blood

DFG, 1989

 

Amb.prof.

D

L

9,5 ml/m 3

BEATS

Air alvéol.

DFG, 1989

Food:

D

L

1 mg/kg

 

 

salt. BGA, 1988

 

 

D

L

0,1 mg/kg

 

 

salt. UMWELT, 1989

 

 

D

L

0,2 mg/kg

 

5)

salt. UMWELT, 1989

 

 

 

 

 

 

 

 

Cosmetics:

D

L

0 mg/kg

 

Prohibition

salt. DVGW, 1985

 

 

EC

L

0 mg/kg

 

Prohibition

salt. WHO, 1984

Note:
1) For a mass flow of 2 kg/h and more
2) In the 4 hours space with 30 minutes maximum going beyond
3) Air in closed room
4) maximum Valeur
5) cumulated Valeur several solvents in a foodstuff

 


VALUES COMPARATIVES/de REFERENCE:

Milieu/origine

Country

Value

Source

Surface water:

 

 

 

The Rhine (Basle, 1982)

D

0,18-1,73 µg/l

salt. DVGW, 1985

The Rhine (Karlsruhe, 1982)

D

0,2-1,39 µg/l

salt. DVGW, 1985

The Rhine (Wiesbaden, 1983)

D

0,14-4,1 µg/l

salt. DVGW, 1985

The Rhine (Cologne, 1983)

D

0,16-0,63 µg/l

salt. DVGW, 1985

Hand (Frankfurt, 1979)

D

0,35-2,8 µg/l

salt. DVGW, 1985

The Ruhr (Witten, 1983)

D

0,1-0,6 µg/l

salt. DVGW, 1985

Elba (1982/83)

D

0,2-9,3 µg/l

salt. UBA, 1986

Weser (1982/83)

D

0,5-1 µg/l

salt. UBA, 1986

The Danube (1983-1985)

D

0,1-2,8 µg/l

salt. UBA, 1986

Drinking water:

 

 

 

Wiesbaden (1980)

D

< 1,8 µg/l

salt. DVGW, 1985

Taunus (1980)

D

< 10,5 µg/l

salt. DVGW, 1985

Medmenham (1981)

GB

< 0,01 µg/l

salt. DVGW, 1985

5 cities (1977)

J

0,2-0,6 µg/l

salt. DVGW, 1985

22 cities (1977)

The USA

< 2 µg/l

salt. DVGW, 1985

Gothenburg (1978)

S

< 0,008 µg/l

salt. DVGW, 1985

Sediments:

 

 

 

The Rhine (Hitdorf, 1982)

D

4 µg/kg

salt. DVGW, 1985

The Ruhr (1972-1981)

D

4-36 µg/kg

salt. DGVW, 1985

EVALUATION AND REMARKS

In the legislation of the Federal Republic of Germany on the chemicals, the tetrachloroethene is not treated like a toxic substance, but the risks of cancer were not excluded yet to date. The various ways of contamination can be at the origin of serious lesions among the workers strongly exposed over long periods.

The evaluation of this substance is made difficult because of the addition of stabilizers of composition different to the technical products from tetrachloroethene. Certain reactive hydrocarbons contained in the stabilizing mixtures, like the épichlorohydrine and the 1,4-dioxanne, could have cancerogenic properties. The underground drinking water and water pollution proves to be alarming, because the tetrachloroethene is degraded only slowly in subsoil waters.



[1] Modified from:

http://translate.google.com/translate?hl=en&sl=fr&u=http://www.gtz.de/uvp/publika/French/Vol329a.htm&prev=/search%3Fq%3Dperclone%26start%3D10%26hl%3Den%26lr%3D%26ie%3DUTF8%26oe%3DUTF8%26sa%3DN